Structure of Ethylene glycol
CAS No.: 107-21-1
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 107-21-1 |
Formula : | C2H6O2 |
M.W : | 62.07 |
SMILES Code : | OCCO |
MDL No. : | MFCD00002885 |
GHS Pictogram: |
![]() ![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H373 |
Precautionary Statements: | P260-P264-P270-P301+P312+P330-P314-P501 |
Num. heavy atoms | 4 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 1.0 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 14.05 |
TPSA ? Topological Polar Surface Area: Calculated from |
40.46 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.7 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
-1.36 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
-1.03 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
-1.15 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
-0.64 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
-0.7 |
Log S (ESOL):? ESOL: Topological method implemented from |
0.7 |
Solubility | 310.0 mg/ml ; 4.99 mol/l |
Class? Solubility class: Log S scale |
Highly soluble |
Log S (Ali)? Ali: Topological method implemented from |
1.01 |
Solubility | 636.0 mg/ml ; 10.2 mol/l |
Class? Solubility class: Log S scale |
Highly soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
0.63 |
Solubility | 264.0 mg/ml ; 4.26 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-7.64 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.0 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
5.7 kg | Stage #1: With trifluoroacetic anhydride In tetrahydrofuran at 10℃; for 1.5 h; Inert atmosphere; Large scale Stage #2: With boron trifluoride diethyl etherate In tetrahydrofuran at 10℃; for 2 h; Large scale |
620g of ethylene glycol and 6L of tetrahydrofuran were added to the reaction flask,Mix well to mix.The reaction temperature was controlled at 10 .Under nitrogen protection,1.41L trifluoroacetic anhydride was slowly added dropwise,Dropping is completed,Reaction for 1.5 hours,The reaction solution.9.14 kg of rapamycin was dissolved in 54 L of tetrahydrofuran,Added to the reaction solution,The reaction temperature was controlled at 10 .Slowly add 13ml boron trifluoride diethyl ether solution. Bi completed,The reaction was stirred for 2 hours. After the reaction is completed,60L saturated aqueous sodium bicarbonate solution was added,Stir wellThen suction filtered,To the filtrate was added 30 L of ethyl acetate,Liquid separation,The organic phase is washed with pure water until nearly neutral.The organic phase was dried over 500 g of anhydrous sodium sulfate for 2 hours, filtered,Concentrated under reduced pressure to a solventless outflow,A thick liquid. Column chromatography,The eluent is petroleum ether:Ethyl acetate = 1: 6. The collected effluent was concentrated under reduced pressure to give 6.3 kg of yellow foamy solid,Yield 66percent.A mixture of 26.8 L of methanol and ethyl acetate (v / v = 1/3) was added to the above yellow foamy solid,Stirring to dissolve,The temperature was controlled at 25 for 30 minutes,13.4 L cyclohexane was added dropwise,Bi completed,The temperature was controlled at 12 for 2 hours,Cool the feed liquid to about 0 slowly stirring 3h,Suction filtration,Drying at room temperature under vacuum gave 5.7 kg of a white solid,HPLC and mass spectrometry determined that the white solid was everolimus,Purity 98.1percent. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
86% | at 230 - 260℃; for 2 h; Inert atmosphere | A solution of trimellitic anhydride (1.0 mol)192 g was mixed with ethylene glycol (0.55 mol) of 34 g,Nitrogen emptying. In nitrogen holdContinued protection to a temperature of 230-240 ° C,This time will continue to have water distillate,Close to the theoretical amount of water (18 grams) after the distillation,Vacuum 10-15mmHg down to 260 for 2 hours, cooling,Refined with 900-1200 grams of acetone,The intermediate trimellitic anhydride ethylene glycol ester, white powder 176 grams, the yield of 86percent. The intermediate was hydrolyzed with a 5percent aqueous solution of sodium hydroxide,Dilute hydrochloric acid to pH = 1-3,Dried to the final product trimellitic acidEthylene glycol esters,White powder 211.8 g, yield 95percent. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
80% | toluene-4-sulfonic acid; In benzene; for 17h;Heating / reflux; | 1,4,7-Trioxaspiro[4.4]nonane. A mixture of intermediate 12 (15.79 g, 183.5 mmol), ethylene glycol (16.7 mL, 300 mmol) and cat. TsOH.H2O (100 mg) in benzene (100 mL) was heated at reflux using Dean-Stark trap. After 17 h, the reaction mixture was cooled, diluted with ether (150 mL), washed with sat. Na2CO3 and brine (50 mL each), dried (Na2SO4), filtered and concentrated to give yellow liquid. Distillation under reduced pressure afforded intermediate 13 as a yellow liquid (19.13 g, 80percent). 1H NMR (500 MHz, CDCl3) delta: 3.9.4 (2H, t, J=7.0 Hz), 3.94-3.90 (4H, m), 3.68 (2H, s), 2.09 (2H, t, J=7.0 Hz). |
80% | toluene-4-sulfonic acid; In benzene; for 17h;Heating / reflux; | Intermediate 13l,4, 7~Trioxaspiro[4.4]nonane. A mixture of intermediate 12 (15.79 g, 183.5 mmol), ethylene glycol (16.7 mL, 300 mmol) and cat. TsOH*H2O (100 mg) in benzene (100 mL) was heated at reflux using Dean-Stark trap. After 17 h, the reaction mixture was cooled, diluted with ether (150 mL), washed with sat. Na2CO3 and brine (50 mL each), dried (Na2SO4), filtered and concentrated to give yellow liquid. Distillation under reduced pressure afforded intermediate 13 as a yellow liquid (19.13 g, 80percent). 1H NMR (500 MHz, CDCl3) delta: 3.9.4 (2H, t, J = 7.0 Hz), 3.94- 3.90 (4H, m), 3.68 (2H, s), 2.09 (2H, t, J = 7.0 Hz). |
80% | toluene-4-sulfonic acid; In benzene; for 17h;Heating / reflux; | 1,4,7-Trioxaspiro[4.4]nonane. A mixture of ethyl 3'-hydroxy-4'-oxo-6',7'-dihydro-4'H-spiro[cyclopentane-1,9'-pyrimido[2,1-c][1,4]oxazine]-2'-carboxylate (15.79 g, 183.5 mmol), ethylene glycol (16.7 mL, 300 mmol) and cat. TsOH.H2O (100 mg) in benzene (100 mL) was heated at reflux using Dean-Stark trap. After 17 h, the reaction mixture was cooled, diluted with ether (150 mL), washed with sat. Na2CO3 and brine (50 mL each), dried (Na2SO4), filtered and concentrated to give yellow liquid. Distillation under reduced pressure afforded the title compound as a yellow liquid (19.13 g, 80percent). 1H NMR (500 MHz, CDCl3) delta: 3.9.4 (2H, t, J=7.0 Hz), 3.94-3.90 (4H, m), 3.68 (2H, s), 2.09 (2H, t, J=7.0 Hz). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
46.7% | With toluene-4-sulfonic acid; In methanol; toluene; at 100℃; for 3h;Inert atmosphere; | The following production was carried out using <strong>[51792-34-8]3,4-dimethoxythiophene</strong> prepared by the same production method as in Example 2 described above. This also applies to Examples 5 to 9 and Comparative Examples 3 to 9 described below.First, 10.1 g of <strong>[51792-34-8]3,4-dimethoxythiophene</strong>, 6.74 g of ethylene glycol, 1.1 g of p-toluenesulfonic acid monohydrate and 76.6 g of toluene were placed in a 100 ml four-necked flask, and the mixture was heated and stirred in an argon atmosphere.And heated to 100 DEG C while distilling methanol at 95 deg. At 100 , the methanol flow terminated and toluene reflux started.The compositional change in the reaction solution was followed by gas chromatography using N, N-dimethylformamide as an internal standard. As a result, <strong>[51792-34-8]3,4-dimethoxythiophene</strong> was found to be below the detection limit at the reflux time of 3 hours. Table 1 summarizes the relationship between the time from the start of reflux of toluene and the concentration of each component.The EDOT, DMEOT, mono- and di-substituents in Table 1 are3,4-ethylenedioxythiophene,<strong>[51792-34-8]3,4-dimethoxythiophene</strong>,One in which one methoxy group of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> is substituted with ethylene glycol,And methoxy groups of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> were replaced with ethylene glycol The conversion (percent) in the table is theoretically 3, 4-ethylenedioxythiophene when N, N-dimethoxyformamide is measured by gas chromatography as an internal standard, Represents the ratio of the amount of 4-ethylenedioxythiophene.The residual ratio (percent) likewise represents the ratio of the actual amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in the reaction solution to the amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in theory.The reaction mixture was diluted with water, the insoluble material was removed by filtration, the crude product was extracted from toluene, the toluene layer was washed with water, washed with aqueous sodium hydrogencarbonate solution, and then dried with magnesium sulfate.After the magnesium sulfate was removed by filtration, the toluene layer was concentrated on a rotary evaporator to obtain a crude product.The yield of the crude product was 6.78 g (68.1percent) and the purity was 98.69percent by gas chromatography.The crude product was subjected to vacuum distillation to obtain 4.65 g (yield: 46.7percent) of 3,4-ethylenedioxythiophene. The purity of its 3,4-ethylenedioxythiophene was 99.64percent by gas chromatography. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
36% | With sulfuric acid; sodium 3-nitrobenzenesulfonate; In water; at 135℃; for 4h; | A sulfuric acid solution was prepared by adding H2SO4 (100 mL) to H2O (57 mL) cooled in an ice bath. To this solution was added glycerol (33 mL, 457 mmol),m-nitrobenzene sulfonic acid sodium salt (48 g, 212 mmol) and 4-amino-pyridine (10 g, 106 mmol). The reaction mixture was heated at 135°C for 4 hours. The cooled reaction mixture was basicified with 2.5 N NaOH (500 mL) with cooling in an ice bath, and extracted into CH2Cl2 (3 x 200 mL). The organic fractions were combined, dried over Na2SO4 and concentrated. The resulting oil was purified by column chromatography (5percent MeOH/CH2Cl2) affording 5.04 g (36percent) as a dark orange oil. An analytical sample was prepared as the HCl salt from EtOAc yielding an orange low melting solid. MS EI m/z 130 M+. Ref: Chem Pharm Bull. 1971, 19, 9, p. 1751-1755 |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With tetrabutylammomium bromide; potassium carbonate; | EXAMPLE 4 Dimethyl 1,1-cyclopropanedicarboxylate 319.6 g of 1,2-dichloroethane (3.23 mol), 5 g of polyethylene glycol (mean molar mass 600 g/mol) and 168.0 g of potassium carbonate (1.2 mol) were initially introduced, and the reaction mixture was heated until the 1,2-dichloroethane refluxes. 132.1 g of dimethyl malonate (1 mol) and 1.25 g of tetrabutylammonium bromide (3.88 mmol) were then added at the boil. The mixture was stirred using a paddle stirrer for 6 hours. Water formed during the reaction was removed by azeotropic distillation with 1,2-dichloroethane throughout the reaction. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Example IA <n="52"/>5-Bromo- l-(2-(7-methoxy quinolin-4-yloxy)ethyl)py ridin-2 (1 H)-one; Alternative synthesis of 5-Bromo- l-(2-(7-methoxyquinolin-4- yloxy)ethyl)pyridin-2( 1 H)-one2-(7-Methoxyquinolin-4-yloxy)ethanol. In a IL RBF under nitrogen was placed sodium (15 g, 652 mmol) cubes. The flask was cooled in an ice bath and ethane- 1,2-diol (150 ml, 2690 mmol) was added slowly through an addition funnel (15min). The cooling bath was removed and the reaction mixture was allowed to warm to ~ 50 0C until all the sodium disappeared. After 20 min, the mixture was heated to 110 0C and <strong>[68500-37-8]4-chloro-7-methoxyquinoline</strong> (69 g, 356 mmol) was added. After 12 h, the mixture was cooled to room temperature and was diluted with H2O (250 mL), resulting the formation of a thick sludge. The content was filtered, and washed with H2O (2x50 mL). After air drying overnight, the solid was heated with benzene (300 mL) under reflux for 3 hr. The mixture was cooled and filtered. The solid was washed with ether (2 x 50 mL) to give a soft solid (77 g) contaminated with the small amount of bisether dimer. MS (ESI pos. ion) calcd for Ci2H13NO3: 219.2; found: 220.1 (MH+). 1H NMR (400 MHz, Chloroform-d) delta ppm 3.94 (s, 3 H) 4.13 (t, 2 H) 4.32 (t, 2 H) 6.64 (d, J=5.28 Hz, 1 <n="53"/>H) 7.14 (dd, J=9.19, 2.54 Hz, 1 H) 7.37 (d, J=2.35 Hz, 1 H) 8.08 (d, J=9.19 Hz, 1 H) 8.66 (d, J=5.48 Hz, 1 H) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With hydrogenchloride; In water; at 20℃; for 1h; | In a four necked round-bottomed glass reactor, equipped with magnetic stirrer, thermometer, condenser maintained at -75°C (dry ice-lsopropyl alcohol) and two addition funnels, 60 g of glycol aldehyde (1.0 mol) and 62 g of ethylene glycol (1.0 mol) were loaded, followed by 10 g of 37percent HCI water solution (0.10 mol HCI) at room temperature; after 1 hour under stirring, the formation of cyclic acetal (G) was complete; the reactor was thus cooled to 0°C with an ice water bath, then a solution of 44 g (1.1 mol) of NaOH (s) and 44 ml of distilled water H2O was added in half an hour. After a slight exothermicity, at 0°C, 216 g (1.0 mmol) of (A) were slowly added. At the end of the addition, the reaction mixture was allowed to reach 20°C, and stirred for another 2 hours. The crude mixture was extracted three times with tetrahydrofuran (THF). The combined THF extracts were dehydrated with MgSO4, filtered and fractionally distilled, collecting 247 g of the partially hydrogenated ether (H) (yield 77percent mol). The aldehyde group of adduct (H) was deprotected (quantitatively) obtaining the corresponding aldehyde (J) by hydrolysis in acidic conditions (diluted HCI). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With hydrogen;Cu/Al2O3/SiO2; In methanol; at 170℃; under 41254.1 Torr; for 16.5h;Autoclave; | HydrogenationThe hydrogenation experiments were performed in a multi-autoclave unit containing four 60 ml batch autoclaves, all equipped with common electrical heating and with individual gas entrainment impellers, manometers and temperature indication . The hydrogenation catalysts were activated in-situ (typical conditions : 230 0C, 10 - 20 bar H2 for 4 hrs ) . The substrates, dissolved in ca . 20 ml solvent , were introduced into the autoclaves by injection. Then, the autoclaves were pressurized with Hz, stirred at 800 rpm and heated to ca. 170 0C. After the reaction, the liquid reactor contents were analyzed by GC-MS. Table 2 shows the reaction conditions and analytical results from the different experiments. Table 23 This specie was qualitatively observed by NMR analysis and/or GC-MS.4 GC-MS peak area percentage (Anpercent) = (peak area n) x 100 / (sum of substrate, 2-hydroxyacetamide, MEG, HOCH2CH2NR2, R2NCH2CH2NR2 and all polyamine peak areas) .5 MEG peak corrected for overlaying methyl glycolate peak (10percent peak area reduction) . n.d. = not determined |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
76% | With toluene-4-sulfonic acid; In toluene; for 4h;Reflux; | To a solution of <strong>[43192-34-3]4-bromo-3-methoxybenzaldehyde</strong> (0.56 g, 2.6 mmol) obtained above in toluene (25 mL) was added para-toluenesulfonic acid (p- TsOH) (0.02 g, 0.1 mmol) And ethylene glycol (5 mL, 89.4 mmol). The mixture was heated at reflux for 4 hours, then cooled and diluted with ethyl acetate (25 mL). The mixture is washed with saturated aqueous sodium hydrogencarbonate solution, and then magnesium sulfate is added to remove moisture, followed by concentration under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ether = 8: 1) to give 2- (4-bromo-3-methoxyphenyl) Bromo-3-methoxyphenyl) -1,3-dioxolane in the form of a colorless oil(76percent yield) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
2.63 g | In toluene;Reflux; Dean-Stark; | A mixtureof 3-methylpicolinaldehyde (2.0 g, 16.5 mmol), ethylene glycol(10 mL), and p-toluenesulfonic acid monohydrate (50 mg) in toluene (15 mL) was heated at reflux with Dean?Stark apparatus overnight. The mixture was concentrated in vacuo and the residue was purified by silica gel chromatography (EtOAc) toyield 9 (2.63 g, 97percent) as a colorless oil. 1H-NMR (400 MHz, CDCl3) delta: 8.46 (1H, dd, J=4.6, 1.0 Hz),7.48 (1H, dd, J=8.0, 0.8 Hz), 7.19 (1H, dd, J=8.0, 4.6 Hz), 6.00(1H, s), 4.23?4.27 (2H, m), 4.06?4.10 (2H, m), 2.44 (3H, s).MS (ESI) m/z: 166.1 (M+H)+. HPLC purity 98.3percent (1.98 min,method B). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium hydroxide; at 80℃; | Preparation of 2-hydroxyethyl 3,4-bis(benzyloxy)benzoate (0176) 3,4-Bis(benzyloxy)benzoic acid was dispersed in ethylene glycol, and heated to 80° C. A catalytic amount of KOH was added to the solution that was left to react until all solids were dissolved. The solution was precipitated into cold water and left to stir for several hours, yielding a white solid. The solid was obtained by filtration, rinsed with water, and then freeze dried. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
94% | (a) 2-(2-Bromo-5-chlorophenyl)-2-methyl-1,3-dioxolane 1-(2-Bromo-5-chlorophenyl)ethanone (8.29 g, 35.50 mmol) was dissolved in toluene (180 mL) in a round-bottomed flask fitted with a Dean-Stark trap. Ethane-1,2-diol (5.96 mL, 106.51 mmol) and 4-methylbenzenesulfonic acid (0.67 g, 3.91 mmol) were added and the reaction mixture was heated at reflux for 3.5 h. The reaction mixture was cooled to r.t., an aq solution of K2CO3 (1 M) was added and the layers were separated. The aq phase was extracted with toluene and the combined organic layers were washed with water and with brine. The solution was dried (MgSO4), filtered and the solvent was removed under reduced pressure to give 9.29 g (94percent) of the title compound. 1H NMR (500 MHz, CDCl3): delta 1.80 (s, 3H), 3.78 (m, 2H), 4.08 (m, 2H), 7.13 (m, 1H), 7.52 (m, 1H), 7.66 (m, 1H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
17.23%Chromat.; 5.38%Chromat. | With 2-aminonaphthalenesulfonic acid; In methanol; toluene; at 100℃; for 1h;Inert atmosphere; | General procedure: The following production was carried out using <strong>[51792-34-8]3,4-dimethoxythiophene</strong> prepared by the same production method as in Example 2 described above. This also applies to Examples 5 to 9 and Comparative Examples 3 to 9 described below.First, 10.1 g of <strong>[51792-34-8]3,4-dimethoxythiophene</strong>, 6.74 g of ethylene glycol, 1.1 g of p-toluenesulfonic acid monohydrate and 76.6 g of toluene were placed in a 100 ml four-necked flask, and the mixture was heated and stirred in an argon atmosphere.And heated to 100 DEG C while distilling methanol at 95 deg. At 100 , the methanol flow terminated and toluene reflux started.The compositional change in the reaction solution was followed by gas chromatography using N, N-dimethylformamide as an internal standard. As a result, <strong>[51792-34-8]3,4-dimethoxythiophene</strong> was found to be below the detection limit at the reflux time of 3 hours. Table 1 summarizes the relationship between the time from the start of reflux of toluene and the concentration of each component.The EDOT, DMEOT, mono- and di-substituents in Table 1 are3,4-ethylenedioxythiophene,<strong>[51792-34-8]3,4-dimethoxythiophene</strong>,One in which one methoxy group of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> is substituted with ethylene glycol,And methoxy groups of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> were replaced with ethylene glycol The conversion (percent) in the table is theoretically 3, 4-ethylenedioxythiophene when N, N-dimethoxyformamide is measured by gas chromatography as an internal standard, Represents the ratio of the amount of 4-ethylenedioxythiophene.The residual ratio (percent) likewise represents the ratio of the actual amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in the reaction solution to the amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in theory.The reaction mixture was diluted with water, the insoluble material was removed by filtration, the crude product was extracted from toluene, the toluene layer was washed with water, washed with aqueous sodium hydrogencarbonate solution, and then dried with magnesium sulfate.After the magnesium sulfate was removed by filtration, the toluene layer was concentrated on a rotary evaporator to obtain a crude product.The yield of the crude product was 6.78 g (68.1percent) and the purity was 98.69percent by gas chromatography.The crude product was subjected to vacuum distillation to obtain 4.65 g (yield: 46.7percent) of 3,4-ethylenedioxythiophene. The purity of its 3,4-ethylenedioxythiophene was 99.64percent by gas chromatography. Except that 2-amino-1-naphthalenesulfonic acid monohydrate of the same substance (mol number) was used instead of the cuedemen sulphonic acid monohydrate of Example 5, and the compositional change in the reaction solution was evaluated by N, N-dimethylformamide was traced by gas chromatography as an internal standard. The relationship between the time from the start of reflux of toluene and the concentration of each component is summarized in Table 8. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
19.3%Chromat.; 12.84%Chromat.; 56.29%Chromat. | With (+)-(1S)-camphor-10-sulphonic acid; In methanol; toluene; at 100℃; for 1h;Inert atmosphere; | General procedure: The following production was carried out using <strong>[51792-34-8]3,4-dimethoxythiophene</strong> prepared by the same production method as in Example 2 described above. This also applies to Examples 5 to 9 and Comparative Examples 3 to 9 described below.First, 10.1 g of <strong>[51792-34-8]3,4-dimethoxythiophene</strong>, 6.74 g of ethylene glycol, 1.1 g of p-toluenesulfonic acid monohydrate and 76.6 g of toluene were placed in a 100 ml four-necked flask, and the mixture was heated and stirred in an argon atmosphere.And heated to 100 DEG C while distilling methanol at 95 deg. At 100 , the methanol flow terminated and toluene reflux started.The compositional change in the reaction solution was followed by gas chromatography using N, N-dimethylformamide as an internal standard. As a result, <strong>[51792-34-8]3,4-dimethoxythiophene</strong> was found to be below the detection limit at the reflux time of 3 hours. Table 1 summarizes the relationship between the time from the start of reflux of toluene and the concentration of each component.The EDOT, DMEOT, mono- and di-substituents in Table 1 are3,4-ethylenedioxythiophene,<strong>[51792-34-8]3,4-dimethoxythiophene</strong>,One in which one methoxy group of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> is substituted with ethylene glycol,And methoxy groups of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> were replaced with ethylene glycol The conversion (percent) in the table is theoretically 3, 4-ethylenedioxythiophene when N, N-dimethoxyformamide is measured by gas chromatography as an internal standard, Represents the ratio of the amount of 4-ethylenedioxythiophene.The residual ratio (percent) likewise represents the ratio of the actual amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in the reaction solution to the amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in theory.The reaction mixture was diluted with water, the insoluble material was removed by filtration, the crude product was extracted from toluene, the toluene layer was washed with water, washed with aqueous sodium hydrogencarbonate solution, and then dried with magnesium sulfate.After the magnesium sulfate was removed by filtration, the toluene layer was concentrated on a rotary evaporator to obtain a crude product.The yield of the crude product was 6.78 g (68.1percent) and the purity was 98.69percent by gas chromatography.The crude product was subjected to vacuum distillation to obtain 4.65 g (yield: 46.7percent) of 3,4-ethylenedioxythiophene. The purity of its 3,4-ethylenedioxythiophene was 99.64percent by gas chromatography. ((+) - 10-camphistsulfonic acid monohydrate of the same substance amount (mol number) was used in place of the cuedemen sulphonic acid monohydrate of Example 5, the compositional change in the reaction solution was evaluated by N, N-dimethylformamide was traced by gas chromatography as an internal standard. Table 7 summarizes the relationship between the time from the start of reflux of toluene and the concentration of each component. |
7.3%Chromat.; 11.78%Chromat.; 70.74%Chromat. | With 2-aminonaphthalenesulfonic acid; In methanol; toluene; at 100℃; for 3h;Inert atmosphere; | General procedure: The following production was carried out using <strong>[51792-34-8]3,4-dimethoxythiophene</strong> prepared by the same production method as in Example 2 described above. This also applies to Examples 5 to 9 and Comparative Examples 3 to 9 described below.First, 10.1 g of <strong>[51792-34-8]3,4-dimethoxythiophene</strong>, 6.74 g of ethylene glycol, 1.1 g of p-toluenesulfonic acid monohydrate and 76.6 g of toluene were placed in a 100 ml four-necked flask, and the mixture was heated and stirred in an argon atmosphere.And heated to 100 DEG C while distilling methanol at 95 deg. At 100 , the methanol flow terminated and toluene reflux started.The compositional change in the reaction solution was followed by gas chromatography using N, N-dimethylformamide as an internal standard. As a result, <strong>[51792-34-8]3,4-dimethoxythiophene</strong> was found to be below the detection limit at the reflux time of 3 hours. Table 1 summarizes the relationship between the time from the start of reflux of toluene and the concentration of each component.The EDOT, DMEOT, mono- and di-substituents in Table 1 are3,4-ethylenedioxythiophene,<strong>[51792-34-8]3,4-dimethoxythiophene</strong>,One in which one methoxy group of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> is substituted with ethylene glycol,And methoxy groups of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> were replaced with ethylene glycol The conversion (percent) in the table is theoretically 3, 4-ethylenedioxythiophene when N, N-dimethoxyformamide is measured by gas chromatography as an internal standard, Represents the ratio of the amount of 4-ethylenedioxythiophene.The residual ratio (percent) likewise represents the ratio of the actual amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in the reaction solution to the amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in theory.The reaction mixture was diluted with water, the insoluble material was removed by filtration, the crude product was extracted from toluene, the toluene layer was washed with water, washed with aqueous sodium hydrogencarbonate solution, and then dried with magnesium sulfate.After the magnesium sulfate was removed by filtration, the toluene layer was concentrated on a rotary evaporator to obtain a crude product.The yield of the crude product was 6.78 g (68.1percent) and the purity was 98.69percent by gas chromatography.The crude product was subjected to vacuum distillation to obtain 4.65 g (yield: 46.7percent) of 3,4-ethylenedioxythiophene. The purity of its 3,4-ethylenedioxythiophene was 99.64percent by gas chromatography. Except that 2-amino-1-naphthalenesulfonic acid monohydrate of the same substance (mol number) was used instead of the cuedemen sulphonic acid monohydrate of Example 5, and the compositional change in the reaction solution was evaluated by N, N-dimethylformamide was traced by gas chromatography as an internal standard. The relationship between the time from the start of reflux of toluene and the concentration of each component is summarized in Table 8. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
13.67%Chromat.; 79.08%Chromat. | With para-dodecylbenzenesulfonic acid; In methanol; toluene; at 100℃; for 1h;Inert atmosphere; | The following production was carried out using <strong>[51792-34-8]3,4-dimethoxythiophene</strong> prepared by the same production method as in Example 2 described above. This also applies to Examples 5 to 9 and Comparative Examples 3 to 9 described below.First, 10.1 g of <strong>[51792-34-8]3,4-dimethoxythiophene</strong>, 6.74 g of ethylene glycol, 1.1 g of p-toluenesulfonic acid monohydrate and 76.6 g of toluene were placed in a 100 ml four-necked flask, and the mixture was heated and stirred in an argon atmosphere.And heated to 100 DEG C while distilling methanol at 95 deg. At 100 , the methanol flow terminated and toluene reflux started.The compositional change in the reaction solution was followed by gas chromatography using N, N-dimethylformamide as an internal standard. As a result, <strong>[51792-34-8]3,4-dimethoxythiophene</strong> was found to be below the detection limit at the reflux time of 3 hours. Table 1 summarizes the relationship between the time from the start of reflux of toluene and the concentration of each component.The EDOT, DMEOT, mono- and di-substituents in Table 1 are3,4-ethylenedioxythiophene,<strong>[51792-34-8]3,4-dimethoxythiophene</strong>,One in which one methoxy group of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> is substituted with ethylene glycol,And methoxy groups of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> were replaced with ethylene glycol The conversion (percent) in the table is theoretically 3, 4-ethylenedioxythiophene when N, N-dimethoxyformamide is measured by gas chromatography as an internal standard, Represents the ratio of the amount of 4-ethylenedioxythiophene.The residual ratio (percent) likewise represents the ratio of the actual amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in the reaction solution to the amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in theory.The reaction mixture was diluted with water, the insoluble material was removed by filtration, the crude product was extracted from toluene, the toluene layer was washed with water, washed with aqueous sodium hydrogencarbonate solution, and then dried with magnesium sulfate.After the magnesium sulfate was removed by filtration, the toluene layer was concentrated on a rotary evaporator to obtain a crude product.The yield of the crude product was 6.78 g (68.1percent) and the purity was 98.69percent by gas chromatography.The crude product was subjected to vacuum distillation to obtain 4.65 g (yield: 46.7percent) of 3,4-ethylenedioxythiophene. The purity of its 3,4-ethylenedioxythiophene was 99.64percent by gas chromatography. The same procedure as in Example 5 was repeated except that dodecylbenzene sulfonic acid monohydrate (moles) was used in place of the cuedemen sulphonic acid monohydrate in Example 5 to change the composition in the reaction solution to N, N-dimethylform The amide was traced by gas chromatography as an internal standard. The relationship between the time from the start of reflux of toluene and the concentration of each component is summarized in Table 5 |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
14.42%Chromat.; 78.58%Chromat. | With naphthalene-2-sulfonate; In methanol; toluene; at 100℃; for 3h;Inert atmosphere; | The following production was carried out using <strong>[51792-34-8]3,4-dimethoxythiophene</strong> prepared by the same production method as in Example 2 described above. This also applies to Examples 5 to 9 and Comparative Examples 3 to 9 described below.First, 10.1 g of <strong>[51792-34-8]3,4-dimethoxythiophene</strong>, 6.74 g of ethylene glycol, 1.1 g of p-toluenesulfonic acid monohydrate and 76.6 g of toluene were placed in a 100 ml four-necked flask, and the mixture was heated and stirred in an argon atmosphere.And heated to 100 DEG C while distilling methanol at 95 deg. At 100 , the methanol flow terminated and toluene reflux started.The compositional change in the reaction solution was followed by gas chromatography using N, N-dimethylformamide as an internal standard. As a result, <strong>[51792-34-8]3,4-dimethoxythiophene</strong> was found to be below the detection limit at the reflux time of 3 hours. Table 1 summarizes the relationship between the time from the start of reflux of toluene and the concentration of each component.The EDOT, DMEOT, mono- and di-substituents in Table 1 are3,4-ethylenedioxythiophene,<strong>[51792-34-8]3,4-dimethoxythiophene</strong>,One in which one methoxy group of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> is substituted with ethylene glycol,And methoxy groups of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> were replaced with ethylene glycol The conversion (percent) in the table is theoretically 3, 4-ethylenedioxythiophene when N, N-dimethoxyformamide is measured by gas chromatography as an internal standard, Represents the ratio of the amount of 4-ethylenedioxythiophene.The residual ratio (percent) likewise represents the ratio of the actual amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in the reaction solution to the amount of <strong>[51792-34-8]3,4-dimethoxythiophene</strong> in theory.The reaction mixture was diluted with water, the insoluble material was removed by filtration, the crude product was extracted from toluene, the toluene layer was washed with water, washed with aqueous sodium hydrogencarbonate solution, and then dried with magnesium sulfate.After the magnesium sulfate was removed by filtration, the toluene layer was concentrated on a rotary evaporator to obtain a crude product.The yield of the crude product was 6.78 g (68.1percent) and the purity was 98.69percent by gas chromatography.The crude product was subjected to vacuum distillation to obtain 4.65 g (yield: 46.7percent) of 3,4-ethylenedioxythiophene. The purity of its 3,4-ethylenedioxythiophene was 99.64percent by gas chromatography. (Number of moles) of cadmium sulfonic acid monohydrate of Example 52-naphthalene sulfonic acidMonohydrate was used, and the compositional change in the reaction solution was followed by gas chromatography using N, N-dimethylformamide as an internal standard. The relationship between the time from the start of reflux of toluene and the concentration of each component is summarized in Table 5 |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
72.0% | General procedure: The intermediate 3a-d (1.0 mmol) was dissolved in dichloromethane (10.0 mL), which has been dried through refluxing, under nitrogen atmosphere. Then, DMAP (1.5 mmol), EDCI (1.25mmol) were added to it in order. Then, ethylene glycol (0.5 mmol), glycerin (0.3 mmol), ribose (0.25 mmol) or xylose (0.25 mmol) was added. After stirring for 24 h at room temperature, the mixture was poured into water and washed with 1 mol/L HCl. The CH2Cl2 layer was concentrated, and the residue was purified using flash chromatography (ethyl acetate: Petroleum ether, 1:100-1:20) to obtain 4-6a, 4-7c or 4-7d. Compound 6-7a, 4-7b, 6d were used directly in the next step without purification and structural characterization. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With toluene-4-sulfonic acid; In toluene; | Exemplified dye D-2-9a was synthesized in the same manner as exemplified dye D-1-1a, except that compound d-1-8 for exemplified dye D-1-1a was changed to compound d-39-1. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
2.5 g | With toluene-4-sulfonic acid; In toluene; for 24h;Reflux; | [0505] Step 2: Synthesis of 4-bromo-2-(1,3-dioxolan-2-yl)pyridine. To a stirred solution of 4- bromopicolinaldehyde in toluene was added ethylene glycol 4- bromo-2-(1,3-dioxolan-2-yl)pyridine 1H-NMR (400 MHz, CDCh: delta (ppm): 8.43 (d, J=5.2 Hz, 1H), 7.72 (d, J=2 Hz, 1H), 7.47-7.45 (dd, J=2 Hz, lH), 5.83 (s, lH), 4.18-4.06 (m, 4H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
94.2% | With toluene-4-sulfonic acid; In toluene; at 130℃; for 12h; | To a solution of <strong>[78775-11-8]4-bromo-3-methyl-benzaldehyde</strong> (2.00 g, 10.1 mmol, 1.00 equiv) in toluene (100 mL) was added TsOH-H20 (191 mg, 1.00 mmol, 0.10 equiv) and ethylene glycol (1.25 g, 20.1 mmol, 1.12 mL, 2.00 equiv). The mixture was stirred at 130 C for 12 h prior to cooling to room temperature. The pH was adjusted to 9 with DMAP and then concentrated in vacuo. The residue was purified by column chromatography (neutral Al203, petroleum ether/ethyl acetate = 1/0 to 100/1) to afford 2-(4-bromo-3 -methyl-phenyl)- 1, 3-dioxolane (2.30 g, 9.46 mmol, 94.2% yield) as a yellow oil. 1H NMR (400 MHz, CDCl3) d =7.54 (d, =8.4 Hz, 1H), 7.36 (d, J=L6 Hz, 1H), 7.17 (dd, =2.4, 8.0 Hz, 1H), 5.76 (s, 1H), 4.15 - 4.08 (m, 2H), 4.08 - 4.00 (m, 2H), 2.42 (s, 3H). |
Tags: 107-21-1 synthesis path| 107-21-1 SDS| 107-21-1 COA| 107-21-1 purity| 107-21-1 application| 107-21-1 NMR| 107-21-1 COA| 107-21-1 structure
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL