Structure of 13708-12-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 13708-12-8 |
Formula : | C9H8N2 |
M.W : | 144.17 |
SMILES Code : | C1=CC=C2C(=C1C)N=CC=N2 |
MDL No. : | MFCD00012335 |
InChI Key : | CQLOYHZZZCWHSG-UHFFFAOYSA-N |
Pubchem ID : | 61670 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 10 |
Fraction Csp3 | 0.11 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 44.5 |
TPSA ? Topological Polar Surface Area: Calculated from |
25.78 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.8 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.04 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.94 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.19 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.45 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.88 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.69 |
Solubility | 0.293 mg/ml ; 0.00203 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.21 |
Solubility | 0.89 mg/ml ; 0.00617 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.69 |
Solubility | 0.0294 mg/ml ; 0.000204 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.73 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.28 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
98% | With 10 wtpercent sulfated polyborate; In neat (no solvent); at 100℃; for 0.05h;Green chemistry; | General procedure: To a mixture of substituted o-phenylenediamines derivative(2.0 mmol) and 1,2-diketone / alpha-hydroxy ketone (2.0 mmol),was added sulfated polyborate (10 wt%). The reaction mixture was stirred at 100 C in an oil bath. The reaction was monitored by thin layer chromatography (TLC). After completion of the reaction, the mixture was cooled to room temperature and quenched by water. The resultant product was filtered/extracted with EtOAc to get the product. Crude products were either recrystallized from ethanol or purified by column chromatography using silica as the stationary phase and EtOAc: pet. ether as mobile phase. The products obtained were known compounds and were identified by melting point and 1H and 13C NMR spectroscopy. The spectral data were compared with the literature values. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
63.6% | With N-Bromosuccinimide; dibenzoyl peroxide; In 1,2-dichloro-ethane; at 110℃; for 4h; | <strong>[13708-12-8]5-Methylquinoxaline</strong> (0.180 mL, 1.387 mmol, commercially available from, for example, Sigma-Aldrich), NBS (289 mg, 1.624 mmol), benzoyl peroxide (37 mg, 0.153 mmol) and 1,2- dichloroethane (4 mL) was stirred at 110 C for 2 h. Further portions of NBS (260 mg, 1.461 mmol)and benzoyl peroxide (31 mg, 0.128 mmol) were added and the reaction refluxed for a further 2 h. The solution was concentrated to give 1.1 g of a brown solid which was purified by chromatography on 5i02 (Biotage SNAP 50 g cartridge, eluting with O-100% diethylether/cyclohexane). The desired fractions were concentrated to give 5-(bromomethyl)quinoxaline (310 mg, 0.882 mmol, 63.6 % yield) as a yellow oil.LCMS (2 mm Formic): Rt=0.91 mi [MH] = 223, 225. |
With bromine; dibenzoyl peroxide; at 70℃; for 10h; | Example 4. Synthesis of TN-5In a 250 mL three-necked bottle was placed 5-methyl quinoxaline (2.88 g, 0.02 mol), benzoyl peroxide(20 mg) was added, CC14 (80 mL) was added, then the reaction was refluxed at 70 C for 10 hrs. The product was cooled and filtered to obtain a crude 2-bromomethyl quinoxaline, the compound was not separated, an excess amount of tert-butyl amine was added, and the reaction was stirred at room temperature for 3 hrs to obtain 5-methyl tert-butylamine quinoxaline (670 mg) in a yield of 15.6%.The above-obtained compound (670 mg, 0.003 mol) were added methanol (60 mL), Na2W04 '2H20 (O.lg) and 30%> H202 (3.5 mL), the reaction was proceeded at roomtemperature for 2.5 hrs. The product was separated by column chromatography (ethyl acetate : petroleum ether = 2: 1) to obtain a light yellow compound TN-4 (154 mg) in a yield of 21.5%.1HNMR (CDC13): 1.69 (s, 9H), 7.83 (dd, IH), 8.10 (dd, IH), 8.80 (d, IH), 8.87 (d, IH), 9.19 (s, IH), 9.96 (dd, IH); ESI-MS: 230 [M+H]+; Anal. (Ci3Hi5N30) C. H. N; found C 68.04%, H 6.95%, N 18.0%; requires: C, 68.10; H, 6.59; N, 18.33. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
15.5 parts (100%) | In tetrachloromethane; | EXAMPLE 1 A mixture of 10 parts of <strong>[13708-12-8]5-methylquinoxaline</strong>, 10 parts of 1,3-dibromo-5,5-dimethylimidazolidine-2,4-dione, 1.7 parts of benzenecarboperoxoic acid and 318 parts of tetrachloromethane was stirred for 16 hours at reflux temperature under 2 lamps of 250 Watt. The reaction mixture was cooled and the organic layer was decanted. The product was filtered off and dried, yielding 15.5 parts (100%) of 5-(bromomethyl)quinoxaline (interm. 1). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With N-Bromosuccinimide; sodium iodide; N-ethyl-N,N-diisopropylamine; In tetrachloromethane; isopropyl alcohol; | Reference Example 74 2-[N-(3-Cyanophenyl)-N-(5-quinoxalinylmethyl)amino]-N-[4-(1-trifluoroacetylpiperidin-4-yl)phenyl]acetamide <strong>[13708-12-8]5-Methylquinoxaline</strong> (710 mg) and 920 mg of N-bromosuccinimide were dissolved in 8 ml of carbon tetrachloride, 50 mg of 2,2'-azobis(isobutyronitrile) was added to the solution, and the mixture was heated under reflux under an argon atmosphere for 5 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was dissolved in 8 ml of isopropanol. To the solution were added 0.60 ml of N-ethyldiisopropylamine, 418 mg of sodium iodide and 1.0 g of 2-(3-cyanophenylamino)-N-[4-(1-trifluoroacetylpiperidin-4-yl)phenyl]acetamide, and the mixture was heated under reflux for 45 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (eluent: ethyl acetate-hexane) to give 560 mg of 2-[N-(3-cyanophenyl)-N-(5-quinoxalinylmethyl)amino]-N-[4-(1-trifluoroacetylpiperidin-4-yl)phenyl]acetamide. 1H-NMR(CDCl3) delta ppm: 1.56-1.72 (2H, m), 1.85-2.00 (2H, m), 2.70-2.93 (2H, m), 3.16-3.30 (1H, m), 4.05-4.17 (1H, m), 4.21 (2H, s), 4.60-4.72 (1H, m), 5.33 (2H, s), 7.00-7.19 (5H, m), 7.23-7.38 (3H, m), 7.53-7.61 (1H, m), 7.70-7.80 (1H, m), 8.05-8.26 (2H, m), 8.80-8.94 (2H, m) |