Structure of 1533519-92-4
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 1533519-92-4 |
Formula : | C13H14ClN |
M.W : | 219.71 |
SMILES Code : | NC1=C2C=CC=CC2=C(C3CC3)C=C1.[H]Cl |
MDL No. : | MFCD28387394 |
InChI Key : | CIQWZUGROQAMOL-UHFFFAOYSA-N |
Pubchem ID : | 91827884 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 15 |
Num. arom. heavy atoms | 10 |
Fraction Csp3 | 0.23 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 0.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 67.78 |
TPSA ? Topological Polar Surface Area: Calculated from |
26.02 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.0 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
4.2 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
4.05 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
3.26 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.27 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.95 |
Log S (ESOL):? ESOL: Topological method implemented from |
-4.28 |
Solubility | 0.0116 mg/ml ; 0.000053 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
Log S (Ali)? Ali: Topological method implemented from |
-4.46 |
Solubility | 0.00769 mg/ml ; 0.000035 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-4.31 |
Solubility | 0.0107 mg/ml ; 0.0000486 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
Yes |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
Yes |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-4.66 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<2.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.11 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
[0349] Cyclopropylmagnesium bromide was added to a solution of bromonaphthalene in tetrahydrofuran stirred at 0-5 C in the presence of catalytic amount of [1,3- bis(diphenylphosphino)propane]dichloronickel(II) to form cyclopropylnaphthalene, which was diluted with ethyl acetate and washed. [0350] Cyclopropylnaphthalene (Compound 6) was dissolved in dichloromethane, then nitric acid was added at 0 C and the reaction mixture was allowed to warm to ambient temperature. After reaction completion, the mixture was neutralized with sodium bicarbonate then washed with water, and l-cyclopropyl-4-nitronaphthalene (Compound 7) was used in the next step without further purification. [0351] Compound 7 was dissolved in methanol, and hydrogenated with hydrazine hydrate at reflux temperature. The crude l-amino-4-cyclopropylnaphthalene (Compound 8) was dissolved in ethanol and reacted with di-tert-butyl dicarbonate in the presence of triethylamine to give tert- butyl 4-cyclopropylnaphthalen-l-ylcarbamate (Compound 14)which was precipitated from methyl tert-butyl ketone. [0352] The protecting group in Compound 14 was removed by hydrochloric acid in ethanol to afford amino-4-cyclopropylnaphthalene which crystallized as an hydrochloride salt (compound 8-B). [0353] 4-Cyclopropylnaphthalen-l -amine hydrochloride (Compound 8-B) was dissolved in dichloromethane and treated with thiophosgene in the presence of sodium hydroxide to generate the corresponding isothiocyanate intermediate COmpound 9. [0354] l-Cyclopropyl-4-isothiocyanatonaphthalene was solvent exchanged with DMF and condensed with amino guanidine hydrochloride to generate the corresponding substituted thiosemicarbazide (Compound 13). Compound 13 was heated in the presence of aqueous sodium hydroxide to form Compound 11 , which was purified by crystallization from a mixture of ethanol and water, then recrystallized from a mixture of dimethylformamide and water. [0355] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium hydroxide; In dichloromethane; | [0349] Cyclopropylmagnesium bromide was added to a solution of bromonaphthalene in tetrahydrofuran stirred at 0-5 C in the presence of catalytic amount of [1,3- bis(diphenylphosphino)propane]dichloronickel(II) to form cyclopropylnaphthalene, which was diluted with ethyl acetate and washed. [0350] Cyclopropylnaphthalene (Compound 6) was dissolved in dichloromethane, then nitric acid was added at 0 C and the reaction mixture was allowed to warm to ambient temperature. After reaction completion, the mixture was neutralized with sodium bicarbonate then washed with water, and l-cyclopropyl-4-nitronaphthalene (Compound 7) was used in the next step without further purification. [0351] Compound 7 was dissolved in methanol, and hydrogenated with hydrazine hydrate at reflux temperature. The crude l-amino-4-cyclopropylnaphthalene (Compound 8) was dissolved in ethanol and reacted with di-tert-butyl dicarbonate in the presence of triethylamine to give tert- butyl 4-cyclopropylnaphthalen-l-ylcarbamate (Compound 14)which was precipitated from methyl tert-butyl ketone. [0352] The protecting group in Compound 14 was removed by hydrochloric acid in ethanol to afford amino-4-cyclopropylnaphthalene which crystallized as an hydrochloride salt (compound 8-B). [0353] 4-Cyclopropylnaphthalen-l -amine hydrochloride (Compound 8-B) was dissolved in dichloromethane and treated with thiophosgene in the presence of sodium hydroxide to generate the corresponding isothiocyanate intermediate COmpound 9. [0354] l-Cyclopropyl-4-isothiocyanatonaphthalene was solvent exchanged with DMF and condensed with amino guanidine hydrochloride to generate the corresponding substituted thiosemicarbazide (Compound 13). Compound 13 was heated in the presence of aqueous sodium hydroxide to form Compound 11 , which was purified by crystallization from a mixture of ethanol and water, then recrystallized from a mixture of dimethylformamide and water. [0355] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With triethylamine; In ethanol; | [0349] Cyclopropylmagnesium bromide was added to a solution of bromonaphthalene in tetrahydrofuran stirred at 0-5 C in the presence of catalytic amount of [1,3- bis(diphenylphosphino)propane]dichloronickel(II) to form cyclopropylnaphthalene, which was diluted with ethyl acetate and washed. [0350] Cyclopropylnaphthalene (Compound 6) was dissolved in dichloromethane, then nitric acid was added at 0 C and the reaction mixture was allowed to warm to ambient temperature. After reaction completion, the mixture was neutralized with sodium bicarbonate then washed with water, and l-cyclopropyl-4-nitronaphthalene (Compound 7) was used in the next step without further purification. [0351] Compound 7 was dissolved in methanol, and hydrogenated with hydrazine hydrate at reflux temperature. The crude l-amino-4-cyclopropylnaphthalene (Compound 8) was dissolved in ethanol and reacted with di-tert-butyl dicarbonate in the presence of triethylamine to give tert- butyl 4-cyclopropylnaphthalen-l-ylcarbamate (Compound 14)which was precipitated from methyl tert-butyl ketone. [0352] The protecting group in Compound 14 was removed by hydrochloric acid in ethanol to afford amino-4-cyclopropylnaphthalene which crystallized as an hydrochloride salt (compound 8-B). [0353] 4-Cyclopropylnaphthalen-l -amine hydrochloride (Compound 8-B) was dissolved in dichloromethane and treated with thiophosgene in the presence of sodium hydroxide to generate the corresponding isothiocyanate intermediate COmpound 9. [0354] l-Cyclopropyl-4-isothiocyanatonaphthalene was solvent exchanged with DMF and condensed with amino guanidine hydrochloride to generate the corresponding substituted thiosemicarbazide (Compound 13). Compound 13 was heated in the presence of aqueous sodium hydroxide to form Compound 11 , which was purified by crystallization from a mixture of ethanol and water, then recrystallized from a mixture of dimethylformamide and water. [0355] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With hydrogenchloride; In ethanol; | [0349] Cyclopropylmagnesium bromide was added to a solution of bromonaphthalene in tetrahydrofuran stirred at 0-5 C in the presence of catalytic amount of [1,3- bis(diphenylphosphino)propane]dichloronickel(II) to form cyclopropylnaphthalene, which was diluted with ethyl acetate and washed. [0350] Cyclopropylnaphthalene (Compound 6) was dissolved in dichloromethane, then nitric acid was added at 0 C and the reaction mixture was allowed to warm to ambient temperature. After reaction completion, the mixture was neutralized with sodium bicarbonate then washed with water, and l-cyclopropyl-4-nitronaphthalene (Compound 7) was used in the next step without further purification. [0351] Compound 7 was dissolved in methanol, and hydrogenated with hydrazine hydrate at reflux temperature. The crude l-amino-4-cyclopropylnaphthalene (Compound 8) was dissolved in ethanol and reacted with di-tert-butyl dicarbonate in the presence of triethylamine to give tert- butyl 4-cyclopropylnaphthalen-l-ylcarbamate (Compound 14)which was precipitated from methyl tert-butyl ketone. [0352] The protecting group in Compound 14 was removed by hydrochloric acid in ethanol to afford amino-4-cyclopropylnaphthalene which crystallized as an hydrochloride salt (compound 8-B). [0353] 4-Cyclopropylnaphthalen-l -amine hydrochloride (Compound 8-B) was dissolved in dichloromethane and treated with thiophosgene in the presence of sodium hydroxide to generate the corresponding isothiocyanate intermediate COmpound 9. [0354] l-Cyclopropyl-4-isothiocyanatonaphthalene was solvent exchanged with DMF and condensed with amino guanidine hydrochloride to generate the corresponding substituted thiosemicarbazide (Compound 13). Compound 13 was heated in the presence of aqueous sodium hydroxide to form Compound 11 , which was purified by crystallization from a mixture of ethanol and water, then recrystallized from a mixture of dimethylformamide and water. [0355] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
94.9% | Put 30 g (0.1 mol) of the compound obtained in Example 5, 100 ml of methanol, and 40 g (0.3 mol) of liquid alkali into the reaction bottle, warm to reflux to react, and monitor by TLC until the reaction is complete, lower the temperature to 20-30 C, and use 10% hydrochloric acid Adjust pH = 1-2, filter, wash the filter cake twice with water, and crystallize with ethanol to obtain the target product 18.1g.(Yield 94.9%, HPLC purity: 99.7%) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
93.1% | With hydrogenchloride; In methanol; water;Reflux; | Put 30 g (0.11 mol) of the compound obtained in Example 7, 50 ml of methanol, and 100 ml of concentrated hydrochloric acid into the reaction bottle, warm up to reflux reaction, TLC monitor until the reaction is complete, reduce the temperature to 20-30 C, filter, and wash the filter cake twice. Crystallization with ethanol gave 22.5 g of the target product.(Yield 93.1%, HPLC purity: 99.5%) |
A175437 [878671-94-4]
4-Cyclopropylnaphthalen-1-amine
Similarity: 0.97
A100677 [1588440-94-1]
4-Cyclopropylaniline hydrochloride
Similarity: 0.89
A167893 [1416354-38-5]
4-(2-Phenylpropan-2-yl)aniline hydrochloride
Similarity: 0.86
A175437 [878671-94-4]
4-Cyclopropylnaphthalen-1-amine
Similarity: 0.97
A100677 [1588440-94-1]
4-Cyclopropylaniline hydrochloride
Similarity: 0.89
A167893 [1416354-38-5]
4-(2-Phenylpropan-2-yl)aniline hydrochloride
Similarity: 0.86