Home Cart Sign in  
Chemical Structure| 2018-90-8 Chemical Structure| 2018-90-8

Structure of 1-(2-Naphthyl)methanamine
CAS No.: 2018-90-8

Chemical Structure| 2018-90-8

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Anushree Mondal ; Pronay Roy ; Jaclyn Carrannatto ; Prathamesh M. Datar ; Daniel J. DiRocco ; Katherine Huntera and E. Neil G. Marsh

Abstract: The prenylated-flavin mononucleotide-dependent decarboxylases (also known as UbiD-like enzymes) are the most recently discovered family of decarboxylases. The modified flavin facilitates the decarboxylation of unsaturated carboxylic acids through a novel mechanism involving 1,3-dipolar cyclo-addition chemistry. UbiD-like enzymes have attracted considerable interest for biocatalysis applications due to their ability to catalyse (de)carboxylation reactions on a broad range of aromatic substrates at otherwise unreactive carbon centres. There are now ∼35[thin space (1/6-em)]000 protein sequences annotated as hypothetical UbiD-like enzymes. Sequence similarity network analyses of the UbiD protein family suggests that there are likely dozens of distinct decarboxylase enzymes represented within this family. Furthermore, many of the enzymes so far characterized can decarboxylate a broad range of substrates. Here we describe a strategy to identify potential substrates of UbiD-like enzymes based on detecting enzyme-catalysed solvent deuterium exchange into potential substrates. Using ferulic acid decarboxylase (FDC) as a model system, we tested a diverse range of aromatic and heterocyclic molecules for their ability to undergo enzyme-catalysed H/D exchange in deuterated buffer. We found that FDC catalyses H/D exchange, albeit at generally very low levels, into a wide range of small, aromatic molecules that have little resemblance to its physiological substrate. In contrast, the sub-set of aromatic carboxylic acids that are substrates for FDC-catalysed decarboxylation is much smaller. We discuss the implications of these findings for screening uncharacterized UbiD-like enzymes for novel (de)carboxylase activity.

Alternative Products

Product Details of [ 2018-90-8 ]

CAS No. :2018-90-8
Formula : C11H11N
M.W : 157.21
SMILES Code : NCC1=CC2=C(C=CC=C2)C=C1
MDL No. :MFCD01529867
InChI Key :XBCAHQUVHHVHHL-UHFFFAOYSA-N
Pubchem ID :137282

Safety of [ 2018-90-8 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H332-H335
Precautionary Statements:P280-P305+P351+P338-P310

Computational Chemistry of [ 2018-90-8 ] Show Less

Physicochemical Properties

Num. heavy atoms 12
Num. arom. heavy atoms 10
Fraction Csp3 0.09
Num. rotatable bonds 1
Num. H-bond acceptors 1.0
Num. H-bond donors 1.0
Molar Refractivity 51.62
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

26.02 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.84
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.95
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

2.15
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

2.56
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.61
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

2.22

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.59
Solubility 0.401 mg/ml ; 0.00255 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-2.12
Solubility 1.19 mg/ml ; 0.00757 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-4.11
Solubility 0.0123 mg/ml ; 0.0000785 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-5.87 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

2.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.0

Application In Synthesis of [ 2018-90-8 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 2018-90-8 ]

[ 2018-90-8 ] Synthesis Path-Downstream   1~2

  • 1
  • [ 2243-82-5 ]
  • [ 2018-90-8 ]
YieldReaction ConditionsOperation in experiment
58% With lithium aluminium tetrahydride; In tetrahydrofuran; at 0 - 20℃; Naphthalene-2-carboxylic acid amide (0.8 g, 1 eq, 4.678 mmol) was dissolved in THF (80 mL) and the solution was cooled down to 0-50C. A 1.0 M solution of Lithium Aluminium Hydride (LAH) in THF (1.42 g, 8.0 eq, 37.0 mmol) was added drop-wise at 0-50C. The reaction mixture was stirred at RT overnight. After completion of the reaction (confirmed by TLC), ethyl acetate at 0-50C was slowly added to quench the excess LAH in reaction mixture followed by the addition of saturated sodium sulphate solution (2 mL). The reaction mass was filtered through a hy-flow bed and the filtrate was concentrated in vacuo to afford the crude product.The crude product was purified by column chromatography using neutral silica gel of 60- 120 mesh size. A gradient of 3-4 percent methanol in DCM was used to elute the title compound (0.43 g, 58percent).
56% Compound 27 (1.00 g, 5.8 mmol) in THF (20 mL) was added slowly to a solution of LAH (1.76 g, 46.4 mmol) in THF (45 mL) at 0° C. The solution was allowed to warm to room temperature and the reaction was stirred overnight. The reaction was cooled to 0° C. and quenched with H2O. The solids were filtered from the solution through celite and washed with hot THF. The filtrate was concentrated and the residue was dissolved in EtOAc (80 mL) and washed with 1 M HCl (3.x.30 mL). The aqueous layer was basified with 6 M NaOH to a pH of 12 and the precipitate was extracted with EtOAc (3.x.30 mL). The resulting organic solution was washed with brine (40 mL), dried with Na2SO4 and filtered. Concentration afforded a slightly yellow solid (510 mg, 56percent yield). m.p. 55-56° C. 1H NMR (CDCl3) delta 7.80 (3H, ArH), 7.72 (s, 1H, ArH), 7.43 (m, 3H, ArH), 4.00 (s, 2H, ArCH2). 13C NMR (CDCl3) delta 140.6, 133.5, 132.5, 128.2, 127.7, 126.1, 125.8, 125.5, 125.1, 46.6. IR (KBr) vmax cm-1: 3362, 3291, 3050, 2915, 1950, 1596, 1507, 1358, 1273. GC: r.t.=8.97 min. EI-MS m/z (percent) 157 (83, M+), 156 (100), 141 (15), 129 (49), 128 (40), 127 (24), 115 (10).
With dimethylsulfide borane complex; In tetrahydrofuran; at 0 - 60℃; for 3h; To a solution of the crude amide obtained in the above step (1) inTHF (100 ml), BMS (27.5 ml, 0.2904 mol) was slowly added at 0 °C. Theresulted reaction mixture was heated to 60 °C for 3hrs, quenched with 5percent HCIat 0 °C, extracted with EA and washed with 5percent HCI. The aqueous layerswere combined and basified with 1N NaOH, and again extracted with EA.The organic layers were combined and concentrated to give the title compound(13 g) as white solid.TLC System 1 : MC/MeOH =90:10 v/v Rf=0.231H-NMR (300 MHz, CDCI3) 5 ppm: 4.07(s, 2H), 7.48(m, 3H),7.79(m, 4H)
  • 2
  • [ 2018-90-8 ]
  • [ 2243-82-5 ]
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 2018-90-8 ]

Aryls

Chemical Structure| 100-81-2

A739290 [100-81-2]

m-Tolylmethanamine

Similarity: 0.96

Chemical Structure| 118-31-0

A437499 [118-31-0]

Naphthalen-1-ylmethanamine

Similarity: 0.88

Chemical Structure| 74788-82-2

A207292 [74788-82-2]

2,6-Dimethylbenzylamine

Similarity: 0.88

Chemical Structure| 40393-99-5

A348984 [40393-99-5]

Mesitylmethanamine

Similarity: 0.88

Chemical Structure| 89-93-0

A428041 [89-93-0]

o-Tolylmethanamine

Similarity: 0.88

Amines

Chemical Structure| 100-81-2

A739290 [100-81-2]

m-Tolylmethanamine

Similarity: 0.96

Chemical Structure| 118-31-0

A437499 [118-31-0]

Naphthalen-1-ylmethanamine

Similarity: 0.88

Chemical Structure| 74788-82-2

A207292 [74788-82-2]

2,6-Dimethylbenzylamine

Similarity: 0.88

Chemical Structure| 40393-99-5

A348984 [40393-99-5]

Mesitylmethanamine

Similarity: 0.88

Chemical Structure| 89-93-0

A428041 [89-93-0]

o-Tolylmethanamine

Similarity: 0.88