Structure of 2296-23-3
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 2296-23-3 |
Formula : | C7H4INO |
M.W : | 245.02 |
SMILES Code : | N#CC1=CC=C(O)C(I)=C1 |
MDL No. : | MFCD11054826 |
InChI Key : | XAONDNGLTPLRKO-UHFFFAOYSA-N |
Pubchem ID : | 10955815 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302 |
Precautionary Statements: | P280-P305+P351+P338 |
Num. heavy atoms | 10 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 45.9 |
TPSA ? Topological Polar Surface Area: Calculated from |
44.02 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.69 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.94 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.87 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.71 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.29 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.9 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.03 |
Solubility | 0.231 mg/ml ; 0.000943 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.49 |
Solubility | 0.795 mg/ml ; 0.00325 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.87 |
Solubility | 0.334 mg/ml ; 0.00136 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
Yes |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.42 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.9 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
82% | With ammonium hydroxide; iodine; potassium iodide; In water; at 20℃; for 16h;Inert atmosphere; | To a solution of 4-hydroxy-benzonitrile (5 g, CAS: 767-00-0) in NH4OH (225 mL) was added a solution of KI (34.14 g, CAS: 7681-11-0) and ?2(10.65 g, CAS: 7553-56-2) in H20 (50 mL). The reaction mixture was stirred at rt for 16 hours. The reaction mixture was filtered andthe filtrate was evaporated. The residue was dissolved in DCM (250 mL) and was washed with H20 (2x150 mL), saturated aqueous Na5203 solution (100 mL) and brine (100 mL). The organic layer was dried over anhydrous Na2504, filtered and concentrated under reduced pressure to give the title compound (8.44 g, 82%) that was used in the next step without further purification. LC-MS: (ESI): mlz = 244.0 [M-H] |
80% | With ammonium hydroxide; iodine; potassium iodide; In water; for 6h; | To a solution of A- hydroxybenzonitrile (0.5 g; 4.18 mmol) in 25% NH4OH (22 ml) a solution of I2 (1.06 g; 4.18 mmol) and Kl (3.41 g; 20.54 mmol) in H2O (5 ml) was added at once with stirring. The stirring was continued for 6 h, during which time the mixture turn from black into colourless. The precipitate formed was filtered off and filtrate was evaporated to dryness under reduced pressure. The residue was treated with H2O (3 ml). The precipitate formed was filtered off, washed with cold H2O (3 x 2 ml), and dried in vacuo to give the title compound (0.82 g; 80%), as colourless solid. 1H-NMR (CDCI3) 7.96 (d, 1 H, 1 .9 Hz); 7. 53 (dd, 1 H, J = 1 .9 Hz, 8.5 Hz); 7.03 (d, 1 H, J = 8.5 Hz); 6.03 (s, 1 H); |
80% | With ammonia; iodine; potassium iodide; In water; for 6h; | To a solution of 4- hydroxybenzonitrile (0.5 g; 4.18 mmol) in 25% NH4OH (22 ml) a solution of I2 (1.06 g; 4.18 mmol) and Kl (3.41 g; 20.54 mmol) in H2O (5 ml) was added at once with stirring. The stirring was continued for 6 h, during which time the mixture turn from black into colourless. The precipitate formed was filtered off and filtrate was evaporated to dryness under reduced pressure. The residue was treated with H2O (3 ml). The precipitate formed was filtered off, washed with cold H2O (3 x 2 ml), and dried in vacuo to give the title compound (0.82 g; 80%), as colourless solid. 1 H-NMR (CDCI3 ) 6.03 (s, 1 H); 7.03 (d, 1 H, J = 8.5 Hz); 7. 53 (dd, 1 H, J = 1 .9 Hz, 8.5 Hz); 7.96 (d, 1 H, 1 .9 Hz). |
80% | With ammonium hydroxide; iodine; potassium iodide; In water; for 6h; | To a solution of 4- hydroxybenzonitrile (0.5 g; 4.18 mmol) in 25% NH4OH (22 ml) a solution of l2 (1 .06 g; 4.18 mmol) and Kl (3.41 g; 20.54 mmol) in H20 (5 ml) was added at once with stirring. The stirring was continued for 6 h, during which time the mixture turn from black into colourless. The precipitate formed was filtered off and filtrate was evaporated to dryness under reduced pressure. The residue was treated with H20 (3 ml). The precipitate formed was filtered off, washed with cold H20 (3 x 2 ml), and dried in vacuo to give the title compound (0.82 g; 80%), as colourless solid. 1 H-NMR (CDCI3) 7.96 (d, 1 H, 1 .9 Hz) ; 7. 53 (dd, 1 H, J = 1 .9 Hz, 8.5 Hz) ; 7.03 (d, 1 H, J = 8.5 Hz); 6.03 (s, 1 H) ; |
With ammonia; iodine; In methanol; water; at 20℃; for 2h; | A. 3-Iodo-4-hydroxybenzonitrile 11.9 g (0.1 mol) of 4-hydroxybenzonitrile are dissolved in 250 ml of methanol and 250 ml of 20% aqueous ammonia are added. A solution of 31.75 g of iodine in 250 ml of methanol is then added dropwise, with care, due to the explosive nature of the reaction. After addition, the mixture is stirred for 2 hours at ambient temperature. The methanol is evaporated off, dilution is carried out in water and acidification with a hydrochloric acid solution is performed until pH=2 to 3 is obtained. Extraction with ethyl acetate and washing with water, a sodium thiosulfate solution and a saturated sodium chloride solution are subsequently carried out. In this way, 24.73 g of desired compound are obtained. M.p.: 144-146 C. The compound below was prepared using the same process as above: |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
67% | Example 87A 4-hydroxy-3-iodobenzonitrile In a 2000 mL round-bottom flask containing 10.0 g (84 mmol) of 4-cyanophenol, 450 mL conc. animonium hydroxide was added and contents were allowed to stir at 25 C. for 15 min. Next, a solution of 67.9 g (409 mmol) potassium iodide and 21.3 g (84 mmol) iodine chips, dissolved in 100 mL water, was quickly added. The reaction mixture was allowed to stir at 25 C. for 18 h at which time contents were filtered. The filtrate was concentrated under reduced pressure and redissolved in 500 mL dichloromethane. The organic layer was then washed twice with 250 mL water, dried, and concentrated under reduced pressure to provide the title compound as a light yellow solid (14.3 g, 67% yield). 1H-NMR (300 MHz, CDCl3) delta 7.03 (d, 1H), 7.66 (dd, 1H), 7.98 (s, 1H); MS DCI m/e, 263 (M+NH4)+. |