Structure of 38956-79-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 38956-79-5 |
Formula : | C5H8N4 |
M.W : | 124.14 |
SMILES Code : | N(N)C1=CC=C(N=N1)C |
MDL No. : | MFCD00067771 |
InChI Key : | FIEDFVRFAQARPW-UHFFFAOYSA-N |
Pubchem ID : | 12379804 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 9 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.2 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 34.2 |
TPSA ? Topological Polar Surface Area: Calculated from |
63.83 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
0.86 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
-0.18 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
-0.12 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.05 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
-0.11 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.1 |
Log S (ESOL):? ESOL: Topological method implemented from |
-0.92 |
Solubility | 14.8 mg/ml ; 0.119 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-0.7 |
Solubility | 24.5 mg/ml ; 0.197 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.69 |
Solubility | 2.55 mg/ml ; 0.0205 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-7.19 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.96 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
23% | 4) 1-(6-Methyl-3-pyridazinyl)-5-(5-methyl-2-pyridyl)-1H-pyrazole-3-carboxylic acid ethyl ester To a solution of 4-(5-methyl-2-pyridyl)-2, 4-dioxobutanoic acid ethyl ester (3.54 g) and <strong>[38956-79-5]3-hydrazino-6-methylpyridazine</strong> (1.87 g) of (1) above in ethanol (71 mL), acetic acid (4.31 mL) was added at room temperature, and the resultant mixture was heated to reflux for 15 hours. Further, concentrated hydrochloric acid (4.7 mL) was added to the reaction solution, and the mixture was heated to reflux for 3 hours. After air cooling, saturated sodium hydrogen carbonate and chloroform were added to the reaction solution, and the mixture was partitioned. The organic layer was dried over anhydrous sodium sulfate. After separation by filtration, a residue obtained by evaporating the solvent under reduced pressure was purified by silica gel column chromatography (chloroform-ethyl acetate), to obtain 1-(6-methyl-3-pyridazinyl)-5-(5-methyl-2-pyridyl)-1H-pyrazole-3-carboxylic acid ethyl ester (1.13 g, 23%) as a solid. 1H-NMR(400MHz, CDCl3)delta: 1.41-1.44(3H, m), 2.32(3H, s), 2.72(3H, s), 4.43-4.48(2H, m), 7.18(1H, s), 7.46-7.56(3H, m), 7.98(1H, d, J=8.8Hz), 8.21(1H, m). EI-MSm/z: 323(M+). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
81% | With hydrazine; In ethanol; for 2.5h;Heating / reflux;Product distribution / selectivity; | 1) 3-Hydrazino-6-methylpyridazine Hydrazine monohydrate (45 mL) was added to a suspension of 3-chloro-6-methylpyridine (3.00 g) in ethanol (45 mL), and the resultant mixture was heated to reflux for 2.5 hours. After air cooling, a residue obtained by evaporating the reaction solvent was purified by silica gel chromatography (a lower layer mixed solvent of chloroform-methanol-water (7:3:1)), to obtain 3-hydrazino-6-methylpyridazine (2.35 g, 81%) as a solid. 1H-NMR(400MHz, DMSO-d6)delta: 2.39(3H, s), 4.20(2H, br), 6.94(1H, d, J=9.3Hz), 7.18(1H, d, J=9.3Hz), 7.64(1H, br). ESI-MSm/z: 125(M+H)+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
85% | With potassium hydroxide; In methanol; at 0 - 20℃;Heating / reflux; | Step 2: 6-Methyl-[l,2,4]triazoIo[4,3-b]pyridazine-3-thiol; [0373] To a solution of KOH (1 1.3 g, 0.202 mol) in methanol (100 mL) was added (6- methyl-pyridazin-3-yl)-hydrazine (25 g, 0.202 mol) at room temperature. The reaction mixture was placed in an ice-water bath and carbon disulfide (98 mL, 1.61 mol) was slowly added. The resultant yellow solution was heated to reflux overnight before removal of solvent. The yellow residue was acidified with 2 N aqueous HCl to pH~4, filtered, and washed with water. Upon drying 33 g of 6-methyl-[l, 2,4]triazolo [4,3 -b]pyridazine-3 -thiol was obtained as a yellow powder (85% yield): 1HNMR (DUSO-d6): delta 2.5 (s, 3H), 7.28 (d, IH), 8.05 (d, IH), 14.66 (br s, IH); MS (m/z) 167 [M+H+]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. | |
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 C for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 C for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulfate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7 (See reference no; 7 for supporting information). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. | |
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 C for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 C for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulfate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7 (See reference no; 7 for supporting information). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. | |
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 C for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 C for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulfate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7 (See reference no; 7 for supporting information). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. | |
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 C for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 C for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulfate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7 (See reference no; 7 for supporting information). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. | |
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 C for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 C for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulfate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7 (See reference no; 7 for supporting information). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. | |
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 C for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 C for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulfate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7 (See reference no; 7 for supporting information). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. | |
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 C for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 C for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulfate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7 (See reference no; 7 for supporting information). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. | |
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 C for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 C for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulfate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7 (See reference no; 7 for supporting information). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. | |
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 C for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 C for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulfate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7 (See reference no; 7 for supporting information). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. | |
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 C for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 C for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulfate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7 (See reference no; 7 for supporting information). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 oC for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 oC for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulphate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7. | |
In ethanol; at 60℃; for 0.5h; | General procedure: A mixture of corresponding hydrazinylpyridazine 1 or 5 (1 mmol) and aldehyde 2 (1.1 mmol) in ethanol (5 mL) was heated at 60 C for 0.5 h. The formation of hydrazone was checked by TLC and the reaction mixture was cooled to rt. Oxone (1.5 mmol) was added to the mixture at rt followed by tetramethyl ammonium bromide (0.2 mmol) and the resulting mixture was heated at 60 C for another 5 h. The mixture was cooled to rt and extracted with dichloromethane (2 × 25 mL), dried over anhydrous sodium sulfate and concentrated to obtain a residue which was purified by column chromatography using hexane/ethyl acetate as eluent to furnish the desired triazolopyridazines 4 and 7 (See reference no; 7 for supporting information). |