There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
Structure of 6287-38-3
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Hydrazinated geraniol derivatives as potential broad-spectrum antiprotozoal agents
Jooste, Joelien ; Legoabe, Lesetja J ; Ilbeigi, Kayhan ; Caljon, Guy ; Beteck, Richard M ;
Abstract: Geraniol, a primary component of several essential oils, has been associated with broad-spectrum antiprotozoal activities, although moderate to weak. This study primarily concentrated on the synthesis of hydrazinated geraniol derivatives aspotential antiprotozoal agents. The synthesised compounds were tested in vitro against different parasitic protozoans of clinical relevance, including Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania infantum. Compounds 6, 8, 13, 14 and 15 demonstrated low micromolar activity against the different parasites. Compounds 8, 13, 14 and 15 had the highest efficacy against Trypanosoma brucei rhodesiense, as indicated by their respective IC50 values of 0.74, 0.56, 1.26 and 1.00 μM. Compounds 6, 14 and 15 displayed the best activity against Trypanosoma brucei brucei, with IC50 values of 1.49, 1.48 and 1.85 μM, respectively. The activity of compounds 6, 14 and 15 also extended to intracellular Trypanosoma cruzi, with IC50 values of 5.14, 6.30 and 4.90 μM, respectively. Compound 6, with an IC50 value of 11.73 μM, and compound 14, with an IC50 value of 8.14 μM, demonstrated some modest antileishmanial activity.
Show More >
Keywords: geraniol ; Leishmania infantum ; Trypanosoma brucei brucei ; Trypanosoma brucei rhodesiense ; Trypanosoma cruzi
Show More >
Design and synthesis of imidazo[1,2-a]pyridine-chalcone conjugates as antikinetoplastid agents
Agarwal, Devesh S. ; Beteck, Richard M. ; Ilbeigi, Kayhan ; Caljon, Guy ; Legoabe, Lesetja J. ;
Abstract: A library of imidazo[1,2-a]pyridine-appended chalcones were synthesized and characterized using 1H NMR,13C NMR and HRMS. The synthesized analogs were screened for their antikinetoplastid activity against Trypanosoma cruzi, Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Leishmania infantum. The analogs were also tested for their cytotoxicity activity against human lung fibroblasts and primary mouse macrophages. Among all screened derivatives, (E)-N-(4-(3-(2-chlorophenyl)acryloyl)phenyl)imidazo[1,2-a]pyridine-2-carboxamide was found to be the most active against T. cruzi and T. b. brucei exhibiting IC50 values of 8.5 and 1.35 μM, resp. Against T. b. rhodesiense, (E)-N-(4-(3-(4-bromophenyl)acryloyl)phenyl)imidazo[1,2-a]pyridine-2-carboxamide was found to be the most active with an IC50 value of 1.13 μM. All synthesized active analogs were found to be non-cytotoxic against MRC-5 and PMM with selectivity indexes of up to more than 50.
Show More >
Keywords: antikinetoplastid ; chalcone ; drug likeliness properties ; imidazo[1,2-a]pyridine ; neglected tropical diseases (NTDs) ; Trypanosoma brucei brucei ; Trypanosoma brucei rhodesiense
Show More >
Nitrothiazole-Thiazolidinone Hybrids: Synthesis and in Vitro Antimicrobial Evaluation
Dylan Hart ; Lesetja J. Legoabe ; Omobolanle J. Jesumoroti ; Audrey Jordaan ; Digby F. Warner ; Rebecca Steventon , et al.
Abstract: Herein we report the synthesis of novel compounds inspired by the antimicrobial activities of nitroazole and thiazolidin-4-one based compounds reported in the literature. Target compounds were investigated in vitro for antitubercular, antibacterial, antifungal, and overt cell toxicity properties. All compounds exhibited potent antitubercular activity. Most compounds exhibited low micromolar activity against S. aureus and C. albicans with no overt cell toxicity against HEK-293 cells nor haemolysis against human red blood cells. Notably, compound 3b exhibited low to sub-micromolar activities against Mtb, MRSA, and C. albicans. 3b showed superior activity (0.25 μg/ml) against MRSA compared to vancomycin (1 μg/ml).
Show More >
CAS No. : | 6287-38-3 |
Formula : | C7H4Cl2O |
M.W : | 175.01 |
SMILES Code : | O=CC1=CC=C(Cl)C(Cl)=C1 |
MDL No. : | MFCD00003351 |
InChI Key : | ZWUSBSHBFFPRNE-UHFFFAOYSA-N |
Pubchem ID : | 22710 |
GHS Pictogram: |
![]() |
Signal Word: | Danger |
Hazard Statements: | H314 |
Precautionary Statements: | P280-P305+P351+P338-P310 |
Class: | 8 |
UN#: | 1759 |
Packing Group: | Ⅲ |
Num. heavy atoms | 10 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 41.85 |
TPSA ? Topological Polar Surface Area: Calculated from |
17.07 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.7 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.85 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.81 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.63 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.26 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.65 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.1 |
Solubility | 0.139 mg/ml ; 0.000797 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.87 |
Solubility | 0.238 mg/ml ; 0.00136 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.57 |
Solubility | 0.0467 mg/ml ; 0.000267 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.34 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.03 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
61% | With sodium cyanide In N,N-dimethyl-formamide at 50℃; for 1 h; Molecular sieve | General procedure: Aldehyde 1 (1.0 mmol; 1.0 equiv.) and 4 Å molecular sieves (300 mg) were added to a mixture of DMF (3.0 mL) and an appropriate alcohol (or a thiol) (3.0 mL). To the above solution was added sodium cyanide (1.5 mmol; 1.5 equiv). The reaction mixture was stirred in an open flask at 50 C and monitored by TLC. After the complete consumption of 1, the mixture was poured into water (25 mL) and extracted with diethyl ether (5 × 10 mL). The organic layers were combined, dried over anhydrous magnesium sulfate, and concentrated. The crude mixture was further purified by column chromatography on silica gel using ethyl acetate/hexane as the eluent to furnish the desired ester compound 3. The aqueous layer was acidified with HCl, extracted with ether, and concentrated to yield the corresponding carboxylic acid 6, which was sufficiently pure needing no further purification. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
62% | With potassium carbonate; In ethanol;Heating / reflux; | 3,4-dichlorobenzaldehyde (2.0 g, 11.43 mmol), ethyl cyanoacetate (1.29 g, 5 11.43 mmol), <strong>[57297-29-7]cyclopropanecarboxamidine hydrochloride</strong> (1.38 g, 11.43 mmol), and potassium carbonate (1.58 g, 11.43 mmol) were refluxed in ethanol (40 mL) overnight. The stirbar was removed and water was added. The precipitate was filtered and washed with water to give 2.17 g (62percent) of the title compound as a white powder. MS m/z calculated for (M + H)+ 306, found 306. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
78% | at 90℃; for 9h;Neat (no solvent); | Aldehyde 1 (1 mmol), dihydrothiophen-3(2H)-one-1,1-dioxide 2 (0.134 g, 1 mmol), enaminone 3 (1 mmol) and were triturated together in an agate mortar for 5 minutes. Then the mixture was kept at 90 C for a certain time (monitored by TLC). The result mixture was washed with water and recrystallized from ethanol (95 %) to give pure product 4. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium methylate; In methanol; at 20℃; | General procedure: In the first synthetic step (step a, Scheme 1), a series of (Z)-substituted diarylacrylonitrile analogues were synthesized by reacting substituted benzyl carbaldehydes with their corresponding substituted phenylacetonitriles in 5% NaOMe in methanol. The reaction mixture was stirred at room temperature for 2-3 h for the reaction to complete and the final product precipitated of the solution. The precipitate was filtered, washed with water and dried to yield the final compound in yields ranging from 70 to 95% (Scheme 1) [16]. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
80.9% | With potassium carbonate; In 1,4-dioxane; water; at 95℃; for 12h;Inert atmosphere; | 3,4-Dichlorobenzaldehyde 52a (5.0 g, 28.60 mmol), Methyltriphenylphosphonium bromide (20.40 g, 57.20 mmol) And potassium carbonate (9.90 g, 71.50 mmol) was dissolved in 110 mL of dioxane and water (V / V = 10: 1) mixed solvent, heated to 95 C and stirred for 12 hours. The organic phase was combined, washed with saturated sodium chloride solution (50 mL of X3), dried over anhydrous sodium sulfate, filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography The resulting residue was purified with eluent system B to give the title product 1,2-dichloro-4-vinylbenzene 52b (4.0 g, colorless liquid) in 80.9% yield. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
65% | A solution of 3,4-dichlorobenzaldehyde (400 mg, 2.29 mmol, 1 eq) in methanol(8 mL) was treated with aminocyclopentanol hydrochloride (473 mg, 3.44 mmol, 1.5 eq) and triethylamine (0.5 cm3, 3.58 mmol,1.5 eq), and the mixture stirred at rt for 3 hr. Sodium triacetoxyborohydride (680 mg, 3.21 mmol, 1.4 eq) was then divided into two portions and added to the solution at half-hour intervals, and the solution was left to stir for 18 hr. The reaction mixture was quenched using NaOH (2M, 30 mL) and extracted with dichloromethane (30 mL). The aqueous layer was further extracted with dichloromethane (2 x 30 mL) and the combined organic layers were dried over magnesium sulfate, concentrated in vacuo and purified by column chromatographyeluting with dichloromethane: methanol (95:5) to yield the product as a pale pink solid (368 mg, 65%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
58% | 3,4-dichlorobenzaldehyde (400 mg, 2.29 mmol, 1 eq) in methanol (8 mL) was treated with the <strong>[56239-26-0]cis-4-aminocyclohexanol hydrochloride</strong> (522 mg, 3.44 mmol, 1.5 eq) and triethylamine (0.5 cm3, 3.58 mmol, 2 eq), and the mixture stirred at rt for 3 hr. Sodium triacetoxyborohydride (680 mg, 3.21 mmol 1.4 eq) was then divided into two portions and added to the solution at half-hour intervals, and the solution was left to stir for 18 hr. The reaction mixture was quenched using NaOH (2M, 30 mL) and extracted with dichloromethane (30 mL). The aqueous layer was further extracted with dichloromethane (2 x 30 mL) and the combined organic layers were dried over magnesium sulfate, concentrated in vacuo and purified by column chromatography eluting with dichloromethane: methanol (95:5) to yield the product as an off-white solid (366 mg, 58percent). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In tetrahydrofuran; at 0 - 20℃; for 3.16667h;Inert atmosphere; | General procedure: To a solution of aldehyde 11 (4mmol) in THF (12mL) at 0C under nitrogen, was dropwise added methylmagnesium bromide (1.0M in THF, 5mmol). After stirring for 10min the reaction mixture was allowed to warm to room temperature and was stirred for 3h. Upon completion, the reaction was quenched with saturated NH4Cl solution and extracted with EtOAc. The combined organic layer was washed with brine, dried over Na2SO4, and evaporated under reduced pressure. The crude residue was used directly. |
Tags: 6287-38-3 synthesis path| 6287-38-3 SDS| 6287-38-3 COA| 6287-38-3 purity| 6287-38-3 application| 6287-38-3 NMR| 6287-38-3 COA| 6287-38-3 structure
Precautionary Statements-General | |
Code | Phrase |
P101 | If medical advice is needed,have product container or label at hand. |
P102 | Keep out of reach of children. |
P103 | Read label before use |
Prevention | |
Code | Phrase |
P201 | Obtain special instructions before use. |
P202 | Do not handle until all safety precautions have been read and understood. |
P210 | Keep away from heat/sparks/open flames/hot surfaces. - No smoking. |
P211 | Do not spray on an open flame or other ignition source. |
P220 | Keep/Store away from clothing/combustible materials. |
P221 | Take any precaution to avoid mixing with combustibles |
P222 | Do not allow contact with air. |
P223 | Keep away from any possible contact with water, because of violent reaction and possible flash fire. |
P230 | Keep wetted |
P231 | Handle under inert gas. |
P232 | Protect from moisture. |
P233 | Keep container tightly closed. |
P234 | Keep only in original container. |
P235 | Keep cool |
P240 | Ground/bond container and receiving equipment. |
P241 | Use explosion-proof electrical/ventilating/lighting/equipment. |
P242 | Use only non-sparking tools. |
P243 | Take precautionary measures against static discharge. |
P244 | Keep reduction valves free from grease and oil. |
P250 | Do not subject to grinding/shock/friction. |
P251 | Pressurized container: Do not pierce or burn, even after use. |
P260 | Do not breathe dust/fume/gas/mist/vapours/spray. |
P261 | Avoid breathing dust/fume/gas/mist/vapours/spray. |
P262 | Do not get in eyes, on skin, or on clothing. |
P263 | Avoid contact during pregnancy/while nursing. |
P264 | Wash hands thoroughly after handling. |
P265 | Wash skin thouroughly after handling. |
P270 | Do not eat, drink or smoke when using this product. |
P271 | Use only outdoors or in a well-ventilated area. |
P272 | Contaminated work clothing should not be allowed out of the workplace. |
P273 | Avoid release to the environment. |
P280 | Wear protective gloves/protective clothing/eye protection/face protection. |
P281 | Use personal protective equipment as required. |
P282 | Wear cold insulating gloves/face shield/eye protection. |
P283 | Wear fire/flame resistant/retardant clothing. |
P284 | Wear respiratory protection. |
P285 | In case of inadequate ventilation wear respiratory protection. |
P231 + P232 | Handle under inert gas. Protect from moisture. |
P235 + P410 | Keep cool. Protect from sunlight. |
Response | |
Code | Phrase |
P301 | IF SWALLOWED: |
P304 | IF INHALED: |
P305 | IF IN EYES: |
P306 | IF ON CLOTHING: |
P307 | IF exposed: |
P308 | IF exposed or concerned: |
P309 | IF exposed or if you feel unwell: |
P310 | Immediately call a POISON CENTER or doctor/physician. |
P311 | Call a POISON CENTER or doctor/physician. |
P312 | Call a POISON CENTER or doctor/physician if you feel unwell. |
P313 | Get medical advice/attention. |
P314 | Get medical advice/attention if you feel unwell. |
P315 | Get immediate medical advice/attention. |
P320 | |
P302 + P352 | IF ON SKIN: wash with plenty of soap and water. |
P321 | |
P322 | |
P330 | Rinse mouth. |
P331 | Do NOT induce vomiting. |
P332 | IF SKIN irritation occurs: |
P333 | If skin irritation or rash occurs: |
P334 | Immerse in cool water/wrap n wet bandages. |
P335 | Brush off loose particles from skin. |
P336 | Thaw frosted parts with lukewarm water. Do not rub affected area. |
P337 | If eye irritation persists: |
P338 | Remove contact lenses, if present and easy to do. Continue rinsing. |
P340 | Remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P341 | If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P342 | If experiencing respiratory symptoms: |
P350 | Gently wash with plenty of soap and water. |
P351 | Rinse cautiously with water for several minutes. |
P352 | Wash with plenty of soap and water. |
P353 | Rinse skin with water/shower. |
P360 | Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. |
P361 | Remove/Take off immediately all contaminated clothing. |
P362 | Take off contaminated clothing and wash before reuse. |
P363 | Wash contaminated clothing before reuse. |
P370 | In case of fire: |
P371 | In case of major fire and large quantities: |
P372 | Explosion risk in case of fire. |
P373 | DO NOT fight fire when fire reaches explosives. |
P374 | Fight fire with normal precautions from a reasonable distance. |
P376 | Stop leak if safe to do so. Oxidising gases (section 2.4) 1 |
P377 | Leaking gas fire: Do not extinguish, unless leak can be stopped safely. |
P378 | |
P380 | Evacuate area. |
P381 | Eliminate all ignition sources if safe to do so. |
P390 | Absorb spillage to prevent material damage. |
P391 | Collect spillage. Hazardous to the aquatic environment |
P301 + P310 | IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician. |
P301 + P312 | IF SWALLOWED: call a POISON CENTER or doctor/physician IF you feel unwell. |
P301 + P330 + P331 | IF SWALLOWED: Rinse mouth. Do NOT induce vomiting. |
P302 + P334 | IF ON SKIN: Immerse in cool water/wrap in wet bandages. |
P302 + P350 | IF ON SKIN: Gently wash with plenty of soap and water. |
P303 + P361 + P353 | IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower. |
P304 + P312 | IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. |
P304 + P340 | IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. |
P304 + P341 | IF INHALED: If breathing is difficult, remove victim to fresh air and keep at rest in a position comfortable for breathing. |
P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
P306 + P360 | IF ON CLOTHING: Rinse Immediately contaminated CLOTHING and SKIN with plenty of water before removing clothes. |
P307 + P311 | IF exposed: call a POISON CENTER or doctor/physician. |
P308 + P313 | IF exposed or concerned: Get medical advice/attention. |
P309 + P311 | IF exposed or if you feel unwell: call a POISON CENTER or doctor/physician. |
P332 + P313 | IF SKIN irritation occurs: Get medical advice/attention. |
P333 + P313 | IF SKIN irritation or rash occurs: Get medical advice/attention. |
P335 + P334 | Brush off loose particles from skin. Immerse in cool water/wrap in wet bandages. |
P337 + P313 | IF eye irritation persists: Get medical advice/attention. |
P342 + P311 | IF experiencing respiratory symptoms: call a POISON CENTER or doctor/physician. |
P370 + P376 | In case of fire: Stop leak if safe to Do so. |
P370 + P378 | In case of fire: |
P370 + P380 | In case of fire: Evacuate area. |
P370 + P380 + P375 | In case of fire: Evacuate area. Fight fire remotely due to the risk of explosion. |
P371 + P380 + P375 | In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. |
Storage | |
Code | Phrase |
P401 | |
P402 | Store in a dry place. |
P403 | Store in a well-ventilated place. |
P404 | Store in a closed container. |
P405 | Store locked up. |
P406 | Store in corrosive resistant/ container with a resistant inner liner. |
P407 | Maintain air gap between stacks/pallets. |
P410 | Protect from sunlight. |
P411 | |
P412 | Do not expose to temperatures exceeding 50 oC/ 122 oF. |
P413 | |
P420 | Store away from other materials. |
P422 | |
P402 + P404 | Store in a dry place. Store in a closed container. |
P403 + P233 | Store in a well-ventilated place. Keep container tightly closed. |
P403 + P235 | Store in a well-ventilated place. Keep cool. |
P410 + P403 | Protect from sunlight. Store in a well-ventilated place. |
P410 + P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 oC/122oF. |
P411 + P235 | Keep cool. |
Disposal | |
Code | Phrase |
P501 | Dispose of contents/container to ... |
P502 | Refer to manufacturer/supplier for information on recovery/recycling |
Physical hazards | |
Code | Phrase |
H200 | Unstable explosive |
H201 | Explosive; mass explosion hazard |
H202 | Explosive; severe projection hazard |
H203 | Explosive; fire, blast or projection hazard |
H204 | Fire or projection hazard |
H205 | May mass explode in fire |
H220 | Extremely flammable gas |
H221 | Flammable gas |
H222 | Extremely flammable aerosol |
H223 | Flammable aerosol |
H224 | Extremely flammable liquid and vapour |
H225 | Highly flammable liquid and vapour |
H226 | Flammable liquid and vapour |
H227 | Combustible liquid |
H228 | Flammable solid |
H229 | Pressurized container: may burst if heated |
H230 | May react explosively even in the absence of air |
H231 | May react explosively even in the absence of air at elevated pressure and/or temperature |
H240 | Heating may cause an explosion |
H241 | Heating may cause a fire or explosion |
H242 | Heating may cause a fire |
H250 | Catches fire spontaneously if exposed to air |
H251 | Self-heating; may catch fire |
H252 | Self-heating in large quantities; may catch fire |
H260 | In contact with water releases flammable gases which may ignite spontaneously |
H261 | In contact with water releases flammable gas |
H270 | May cause or intensify fire; oxidizer |
H271 | May cause fire or explosion; strong oxidizer |
H272 | May intensify fire; oxidizer |
H280 | Contains gas under pressure; may explode if heated |
H281 | Contains refrigerated gas; may cause cryogenic burns or injury |
H290 | May be corrosive to metals |
Health hazards | |
Code | Phrase |
H300 | Fatal if swallowed |
H301 | Toxic if swallowed |
H302 | Harmful if swallowed |
H303 | May be harmful if swallowed |
H304 | May be fatal if swallowed and enters airways |
H305 | May be harmful if swallowed and enters airways |
H310 | Fatal in contact with skin |
H311 | Toxic in contact with skin |
H312 | Harmful in contact with skin |
H313 | May be harmful in contact with skin |
H314 | Causes severe skin burns and eye damage |
H315 | Causes skin irritation |
H316 | Causes mild skin irritation |
H317 | May cause an allergic skin reaction |
H318 | Causes serious eye damage |
H319 | Causes serious eye irritation |
H320 | Causes eye irritation |
H330 | Fatal if inhaled |
H331 | Toxic if inhaled |
H332 | Harmful if inhaled |
H333 | May be harmful if inhaled |
H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled |
H335 | May cause respiratory irritation |
H336 | May cause drowsiness or dizziness |
H340 | May cause genetic defects |
H341 | Suspected of causing genetic defects |
H350 | May cause cancer |
H351 | Suspected of causing cancer |
H360 | May damage fertility or the unborn child |
H361 | Suspected of damaging fertility or the unborn child |
H361d | Suspected of damaging the unborn child |
H362 | May cause harm to breast-fed children |
H370 | Causes damage to organs |
H371 | May cause damage to organs |
H372 | Causes damage to organs through prolonged or repeated exposure |
H373 | May cause damage to organs through prolonged or repeated exposure |
Environmental hazards | |
Code | Phrase |
H400 | Very toxic to aquatic life |
H401 | Toxic to aquatic life |
H402 | Harmful to aquatic life |
H410 | Very toxic to aquatic life with long-lasting effects |
H411 | Toxic to aquatic life with long-lasting effects |
H412 | Harmful to aquatic life with long-lasting effects |
H413 | May cause long-lasting harmful effects to aquatic life |
H420 | Harms public health and the environment by destroying ozone in the upper atmosphere |
Sorry,this product has been discontinued.
Home
* Country/Region
* Quantity Required :
* Cat. No.:
* CAS No :
* Product Name :
* Additional Information :
Total Compounds: mg
The concentration of the dissolution solution you need to prepare is mg/mL