Structure of 78364-55-3
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 78364-55-3 |
Formula : | C7H6FN3S |
M.W : | 183.21 |
SMILES Code : | NNC1=NC2=CC=C(F)C=C2S1 |
MDL No. : | MFCD04448803 |
InChI Key : | QODXZESJVXQCSC-UHFFFAOYSA-N |
Pubchem ID : | 2049844 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H332-H335 |
Precautionary Statements: | P280-P305+P351+P338-P310 |
Num. heavy atoms | 12 |
Num. arom. heavy atoms | 9 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 46.78 |
TPSA ? Topological Polar Surface Area: Calculated from |
79.18 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.21 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.05 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.95 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.62 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.04 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.77 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.76 |
Solubility | 0.321 mg/ml ; 0.00175 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.34 |
Solubility | 0.0835 mg/ml ; 0.000456 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.94 |
Solubility | 0.209 mg/ml ; 0.00114 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.96 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.43 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
89% | With hydrogenchloride; hydrazine hydrate; In water; at 5℃; for 5h;Reflux; | 6-Fluoro-2-hydrazinobenzothiazole (2). Hydrochloric acid (10 mL) was added dropwise to hydrazine hydrate 99% (10 g, 0.2 mol) at 5-10 C, followed by addition of a solution of 2-amino-6-fluorobenzothiazole (1) (3.364 g, 0.02 mol) in ethylene glycol (40 mL). The mixture was heated at reflux temperature for 5 h. On cooling, the precipitated solid was collected by filtration, washed with water, dried and crystallized from ethanol. Yield 89%, m.p. 194-196 C [1]. |
With hydrazine hydrochloride; hydrazine hydrate; In ethylene glycol; at 140℃; for 2h; | General procedure: The substituted aniline (1eq.) and ammonium thiocyanate (2eq.) in 150mL glacial acetic acid were cooled in an ice bath and stirred mechanically. To the sulution, bromine (2eq.) in 25ml glacial acetic acid was added dropwise at such arate to keep the temperature below 10oC throughout the addition. Stirring was continued for additional 30 min after the bromine addition. The precipitate was collected and recrystallization from ethanol to give 2-aminobenzthiazoles. Then, the substituted 2-aminobenzthiazoles (1eq) in ethylene glycol were added hydrazine hydrate (2eq.) and hydrazine dihydrochloride (2eq). The mixture was heated at 140 oC for 2h. After cooling, the precipitate was filtered to give used directly for next step without further purification. Then, the hydrazino compound was added to thionyl chloride (1eq.) for 2h at 50 oC. After evaporated under reduced pressure, the residue was taken up in ethyl acetate and washed with 1 M NaHCO3 and brine each for twice. The organic layer was dried and evaporated to give the crude final product. The crude product was purified by silica gel column chromatography using PE-EA as an eluent. | |
With hydrogenchloride; hydrazine hydrate; In water; ethylene glycol; at 5℃; for 5h;Reflux; | Hydrochloric acid (10 mL) was added dropwise to hydrazine hydrate 99% (10 g, 0.2 mol) at 5-10 C, followed by addition of a solution of 2-amino-6-fluorobenzothiazole (1) (3.364 g, 0.02 mol) in ethylene glycol (40 mL). The mixture was heated at reflux temperature for 5 h. On cooling, the precipitated solid was collected by filtration, washed with water, dried and crystallized from ethanol. Yield 89%, m.p. 194-196 C [1]. |
With hydrogenchloride; hydrazine hydrate; In water; ethylene glycol; at 5℃;Reflux; | Concentrated hydrochloric acid (0.067 mol) was added dropwise with stirring tohydrazine hydrate (0.12 mol) at 5-6 C followed by ethylene glycol (30 mL);thereafter, 6-uorobenzo[d]thiazol-2-amine (1) (20 mmol) was added in portionsand the resultant mixture was reuxed for 2-3 h and cooled at room temperature.The reaction progress was monitored by TLC using toluene:ethylacetate (75:25) asmobile phase. The reaction mixture was ltered and the resulting precipitates werewashed with distilled water. The resulting crude was recrystallized from ethanol. IR(KBr) mmax: 3010 (=C-H str), 1645 (C=C str), 1398 (C=N str). The 1HNMR(DMSO-d6) spectrum of this product showed signals: d 7.2-7.4 (3H, m, Ar C-H), at4.0 (1H, br, NH) and 4.75 (2H, br, NH2) ppm. The peaks in its 13CNMR (DMSO-d6)d: 106.1, 112.4, 115.5, 129.7, 145.5, 157.5, 171.2 ppm. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With thionyl chloride; at 50℃; for 2h; | General procedure: The substituted aniline (1eq.) and ammonium thiocyanate (2eq.) in 150mL glacial acetic acid were cooled in an ice bath and stirred mechanically. To the sulution, bromine (2eq.) in 25ml glacial acetic acid was added dropwise at such arate to keep the temperature below 10oC throughout the addition. Stirring was continued for additional 30 min after the bromine addition. The precipitate was collected and recrystallization from ethanol to give 2-aminobenzthiazoles. Then, the substituted 2-aminobenzthiazoles (1eq) in ethylene glycol were added hydrazine hydrate (2eq.) and hydrazine dihydrochloride (2eq). The mixture was heated at 140 oC for 2h. After cooling, the precipitate was filtered to give used directly for next step without further purification. Then, the hydrazino compound was added to thionyl chloride (1eq.) for 2h at 50 oC. After evaporated under reduced pressure, the residue was taken up in ethyl acetate and washed with 1 M NaHCO3 and brine each for twice. The organic layer was dried and evaporated to give the crude final product. The crude product was purified by silica gel column chromatography using PE-EA as an eluent. |
A188527 [20358-06-9]
4-Fluorobenzo[d]thiazol-2-amine
Similarity: 0.87
A198110 [348-40-3]
6-Fluorobenzo[d]thiazol-2-amine
Similarity: 0.79
A493856 [1160789-91-2]
5-Bromo-6-fluorobenzo[d]thiazol-2-amine
Similarity: 0.79
A504281 [788124-34-5]
5,7-Difluorobenzo[d]thiazol-2-amine
Similarity: 0.77
A188527 [20358-06-9]
4-Fluorobenzo[d]thiazol-2-amine
Similarity: 0.87
A329208 [20174-68-9]
2-Hydrazinyl-4-methylbenzo[d]thiazole
Similarity: 0.84
A198110 [348-40-3]
6-Fluorobenzo[d]thiazol-2-amine
Similarity: 0.79
A329208 [20174-68-9]
2-Hydrazinyl-4-methylbenzo[d]thiazole
Similarity: 0.84